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TECHNICAL NOTE 2884

CAICULATION AND MEASUREMENT QOF
NORMAL, MODES OF VIBRATION OF AN ALUMINUM-ALLOY BOX
BEAM WITH AND WITHOUT LARGE DISCONTINUITIES

By Frank C. Smith and Darnley M. Howard
SUMMARY

The lowest normal modes of vibration of three aluminum-alloy box
beams were calculated using a matrix iteration method. For these calcu-
lations the actual structures were idealized to a system of mass points
interconnected by massless springs. The lowest normal modes of these
beams were measured experimentally and compared with those calculated.
This comparison indicates that the mode shapes and natural frequencies
for structures of this type may be adequately calculated using this
method. The experimental measurements were limited at the higher fre-
quencies by local vibrations of small elements of the beams.

INTRODUCTION

A knowledge of the dynamic characteristics of modern alrcraft struc-
tures 1s becoming increasingly important as the size and speed of air-
craft continue to Increase. High stresses can result from the dynamic
response of an alrcraft structure to landing impact forces, taxiing '
forces, or gust loads. In analyzing the dynamic response of such a
structure to transient external forces the properties of the normal .
modes of the structure are widely used. "An example of such use, in the
case of the landing loads problem, is given in reference 1.

The calculation of the normal modes of a structure requires a knowl-
edge of 1ts mass distributlon and 1ts elastic characteristics. TFor geo-
metrically simple structures, such as straight beams of uniform section,
the elastic properties and the mass distribution may be expressed analyti-
cally and the normal modes easily calculated, However, practical struc-
tures, such as alrcraft wings, usually have mass distributions not expres-
sible in mathematical terms and elastic characteristics which are diffi-
cult to determine. Such a structure must be replaced by a simplified
ldealized structure to render it suitable for mathematical treatment.

The more the real structure is simplified, the less laborious the analysis
becomes, but the results of the analysis also become less accurate.
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The present paper gives the results of calculations and tests made
to determine the vibration characteristics of three reasonably complex
structures whose design 1s generally similar to that used in aircraft.
The results of the calculations of the lower modes of three built-up
aluminum-alloy box beams, with and without large discontimuities, having
large concentrated masses at thelr centers are compared with the results
of vibration tests made on these beams.

The investigation was divided into three parts:

(1) The calculation and measurement of the lower modes of a beam
with a D-nose and a large concentrated mass at its center

(2) The calculation and measurement of the lower modes of the same
beam used in part (1) except that large cutouts were made in one of its
cover sheets

(3) The calculation and measurement -of the lower modes of the speci-
men used in part (2) except that the D-nose was removed

This work was done at the National Bureau of Stendards and has been
made available to the National Advisory Committee for Aeronautics for
publication because of its general iterest.

The authors wish to express their appreciation to the staff of the
Engineering Mechanics Section of the National Bureau of Standards for
their assistance on this work. Particular thanks go to Mr. Samuel Levy
for his help on the theoretical aspects of the problem and to Mr. A. E.
McPherson, who designed the specimens and advised on the experimental
methods used.

The authors also express thelr appreciation to the sponsors of this
investigation, the Office of Ndval Research, Department of the Navy, for
releasing this work for publication.

SPEC IMENS

Three specimens were used in the investigation. Specimen 1, used
for the first part of the work, is shown in figure 1. Specimen 2, used
for the second part of the work, was the same specimen, except that
large cutouts were made in one of its cover sheets between the second
and third bulkheads to each side of its spanwise center line. Specimen 3,
used for the last part of the program, was the same as specimen 2 except
that the D-nose was removed.




NACA TN 288k : 3

The basic specimen consisted of two built-up box beams fastened
together with a heavy steel joint. Bach beam was fshricated from 75S-T6

alumimum-alloy sheet and extruded angles. All rivets were %w-inch diam-

eter and made from A17S-T3 aluminum alloy. Static tests (references 2, 3,
and 4) showed that for moderate loads the steel joint was elastic but
that the flexibility of the Joint was not negligible. The calculations
of the section properties of the specimens were based on measured rather
then nominal dimensions. As a check on these calculations the weight of
specimen 1 was calculated as 350.1 pounds, using nominal densities for
the aluminum and steel. The speclmen was then weighed and found to weigh
359.5 pounds. It was felt that most of the error in calculating the
welght of specimen 1 occurred in calculating the weight of the steel
Joint.

CAICUIATION OF NORMAL MODES

General

The fundamental quantities necessary for the calculation of the
normal modes of a structure are its elastic characteristics and its mass
distribution. The mass dlstribution may be calculated  from the dimen-
sions of the structure and the densities of the materials from which the
structure is fabricated. The elastic characteristics may be determined
either from deflection measurements under static external loads or from
theoretical calculations. ’ -

For the specimens used for these tests the mass distributions were
calculated from measured dimensions and nominal denslties. The elastic
characteristics of the specimens were determined from theoretical con-
siderations and from direct measurement (references 2, 3, and 4). ~ The
mode shapes and natural frequencies were calculated from these quantities
using the theory given in reference 5.

In the case of aircraft wings, a usual assumption made in deflection
calculations 18 that the wing is built into an infinitely rigid root. It
willl be shown later that some flexibility of the root can exist without
seriously affecting the shapes of the calculated normal modes.

\

Idealized Specimens

For the purpose of calculating the normal modes, the actual speci-
mens were replaced by ldealized structures consisting of discrete mass
points interconnected with messless springs as described in appendix IT
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of reference 5. The location and magnitude of these masses replacing
each specimen were determined in the following manner.

It was decided to replace one-half of each actual structure with
14 coplanar masses arranged in pairs along the bulkhead center lines,
a, by. . . g (fig. 2). Seven of the mass points were assumed to lie
along the center line of the rear shear web at the bulkheads, points 2,
h,. . . 14 (fig. 2). The megnitudes of all the masses and the
z-coordinates of masses 1, 3,. . . 13, (y = O for these masses) were
determined as follows: The semispecimen was considered divided into six
free-bodies A, B,. . . F (fig. 2) by passing planes through the specimen
as shown. ZEach free-body was considered resting on knife edges located
at the bulkhead center lines, a, b,. . . g (fig. 2). The proportion of
the mass of each free-body considered lying along these center lines was
calculated from equilibrium considerations.

The total mass of the structure considered lying along any bulkhead
center line weas then obtained by addlng the contributions of mass of the
free-bodies adjacent to the center line in question to the mass of the
bulkhead. - The first moment and the moment of inertia about the x-axis
(fig.-2) for each free-body A, B,. . . F were calculated and proportioned
at the bulkhead center lines a, b,. . . g in direct proportion to the
mass contributions of each free-body to the bulkhead center line. The
magnitudes of all the masses and the z-coordinates, of the masses 1,

3. . « 13, were calculated from

Zy = In/On
n. = Qn/zr | f (1)
mg = Mp - my
J
where
Zy. z-coordinate of rth mass, where r _ 1, 3,. . . 13 (fig. 2)
I, total moment of inertia contributed by adjacent free;bodies and
included bulkhead to nth bulkhead line
O total first moment contributed by adjacent free-bodies and

included bulkhead to the nth bulkhead line

m. megnitude of rth mass, where r =1, 3,. . . 13 (fig. 2)
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M, total mass contributed by adjacent free-bodies and included bulk-
head to nth bulkhead line
mg magnitude of sth mass, where s = 2, 4b,. . . 14 (fig. 2)

The use of equation (1) resulted in a substitute discrete mass dis-
tribution whose mass, first moment, and moment of inertia about the
x-axis were the same as those of the originsl specimen.

Tables 1, 2, and 3 give the magnitudes and locations of the mass
points replacing the actual specimens.

The elastic characteristics of the specimens discussed here were
defined in terms of their influence coefficients. An influence coeffi-
cient between two points is defined here as the deflection of one point
in the y-direction (fig. 2) for & unit load in the y-direction at the
other point when the center of the specimen is claemped. References 2
to 4 give measured influence coefficients, as well as those calculated
from the theory given in reference 5, at 12 points corresponding to the
intersections of the front and rear spars with the bulkheads. For use
in calculating the mode shapes it was necessary to compute the influence
coefficients at the mass-point locations, 3, 4,. . . 14, in figure 2
(those at points 1 and 2 are zero by definition). This was done by
assuming the bulkheads remained rigid in their planes during small
deflections and rotations and then interpolating from the known influ-
ence coefficients at the intersections of the front and rear spars with
* the bulkheads. The computed and measured influence coefficients thus
obtained for specimen 1 at the mass-point locations are shown in tables L
and 5, respectively. Tables 6 and 7, respectively, give measured values
for specimens 2 and 3.

The theoretical influence coefficients for specimen 1 are calculated
in reference 2 with the assumption that the steel joint at the center of
the specimen was infinitely rigid, whereas the measured influence coeffi-
clents for this and the other specimens contain, displacement components
due to rotation and warping of the root. Comparison of tables 4 and 5
shows that this effect is not negligible. »

Calculation of Mode Shapes and Natural Frequencies

of Idealized Structures

The mode shapes and natural frequencies are calculated from the
equations given in reference 5. .Let Y13 Vore o ¢ Vo be the displace-

ments in the y-direction (fig.  2) of the mass points my, My,. . . Iy

et e e n e w oy e = S e L i = i oy s et o = | o ama=
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of a body free from externally applied forces. Then the displacement of
any point m is given by: .

n=14
ym=-28m,nmnjfn+x+6xn+a.zn ,
n=1x
(m=1,2,. . .1 (2)
where
Sm,n deflection of structure at point m for a unit load applied at
point n, with root clamped, (i.e., an influence coefficient)

A © displacement of root (x =y = 2 = 0) in y-direction
e angle of rotation of root about z-axis
a angle of rotation of root about x-axis
Vn acceleration in y-direction of nth mass

. If it is assumed that the masses of the idealized structures are
oscillating in simple harmonic motion:

Ym = &p 8in wt

A = Apay sin wt > (3)

where

an maximum displacement of mth mass, inches
Amax maximum displacement of root, inches

w circular frequency of vibration, radians-per second .
t time, seconds

Substituting into equation (2) and dividing the resultant equations
by -o? sin wt there is obtained:
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n=1k

w n=1L

'%;G%m - Mmax - OmaxXp - OLma.xzm.) = :E: Sm, niinan

(m=1, 2,. .. 14 (%)

In order to solve equations (h) a matrix compos
the influence .coefficients is iterated as shown:

Sl,lml + Sl’eme + 61,3m3 o o s Sl,lhmlh
S2,1m1 + Bp,2mp + By gm3 . . . Bp yymy

53,lm1 + 83,2m2 + 83;3m3 o . 83’14m1h

r-l 1t tt !l_
ai - Mpax - OmaxX - a2

"l 11 1t 1!
80 =~ Mpgy - OpayX - Qpoy

1 aél_)ll _elt _ tt

(')

Oy, 1M+ Byy gy *+ By, gmg - S1u, ilpml_lﬂ 814

ed of the masses and

- Fai-
T
a2

' —
a3 =

(5)
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where a]'_, a.é, . . . a.]'_)_L are a first approximation of the mode shape
11 Tt Tt

and & a2 s+ - - 8 area second approximation.

11 e 1t

To determine Ap.., Opgy 80Ad gy the sums A, B, and C are
computed from equations (4) as follows:

1 . n=lh ]
;mmam )“max - BmaxX - q'ma.xzm n)g meZSm,nmnan A
n=
1k 14 n=14
mexam 7“‘rma.x"emza.xx OLmaxz gmmmel 5m,nmna‘r'1=]3>(6)
1l - 1L n=1l
me (em' - Midx - Omax* - ama.xz)( ,l,)2 mezm; Bm,nmnan
J

By meking use of the condition that the specimen is not accelerated
as a rigid body:

(7)

il
o
Y

> TnXpap'
body

Il
(@]

> mpzpey

body
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For symmetrical vibratory modes, the displacements aé' are the same on

the right- and left-hand portions of the specimen with the result that
equations (6) reduce to

1l ' | A
> mey' =
n=1
” > (7a)
:E::mnznaﬁ' =0
n=1 ,

J
Fdr artisymmetrical vibratory modes, the displacements aﬁ' are of

opposite signs for the two halves of the specimen with the result that
equations (6) reduce to

> mgxgep' =0 ‘ (70)

n=1

For symmetric modes, teking 6”/(&)")2 as zero and substituting equa-
tions (7a) into the first and third of equations (6)

ll l!

- n)ez n)gzmmzm A

m=1

u)gzmmzm n)g mezm =C & (88.)

b - o'’ A
. ((a)lf)E >
o
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For antisymmetric modes, taking )\."/(a)“)2 and a"/(af') as zero
and substituting eguaetion (7b) into the second of equations (6)

Omax 1 2
—(wn)z mexm =B
m=1

X" Tt
((Dtl)Q = (:l!)z =0 (8b)

The summations in equations (8) are computed from the mass distribution
and geometry of the specimen. Knowing these and A, B, and c,

k"/& e 9"/( '')2, and a'v/hn")e can be evaluated by solving
equations (8a) for symmetric modes and (8b) for antisymmetric modes. By
combining the results of equations (5) with the solution of equations (8)

"/Qm")e is given:

a!;l, = Tt tt —9 )‘ma.x Gma.xx d‘maxz
(o y? G ryp e ™ Okt - i) + (55 (‘”'('b2
9

The new approximate mode shape is normalized for the next iteration by
forming the ratios

n/(a)u)e

l! tl)
The approximate value of «° is taken as

a1

oy flo')®
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The iteration procedure used in solving equations (%) causes the
solution to converge to the lowest mode. These equations may be solved
for higher modes if the modes with lower frequencies than the assumed
mode are "swept" out. This procedure, based on the fact that the solu-
tions for equations (4) are orthogonal, is derived in reference 6. Equa-
tions (4) were set up for four cases: .

(1) specimen 1, using the calculated influence coefficients given
in table 4

(2) specimen 1, using the measured influence coefficlents given in
table 5 '

(3) Specimen 2, using the measured influence coefficients given in
table 6

(4) Specimen 3, using the measured influence coefficients given in
table T .

The four sets of équations (4) were solved for the following modes
by the matrix iteration process given in reference 5:

(1) Specimen 1 (calculated and measured influence coefficients):
Three lowest natural frequencies and associated mode shapes

(2) Specimen 2 (measured influence coefficients): Four lowest
natural frequencles and assoclated mode shapes

(3) Specimen 3 (measured influence coefficients): Three lowest
natural frequencies and associated mode shapes

The displacements of the masses obtained from the iteration were
interpolated to obtain a set of displacements at the intersections of
the bulkheaeds with the front and rear spars. These displacements were
normalized by dividing them by the displacement at the intersection of
the end bulkhead with the front spar. The resulting mode shapes for
those cases where experimental resulits were obtained are shown in fig-
ures 3 to 6 and their natural frequencies are given in table 8.

Figures 3(a), 3(b), and 3(c) show that although there was a serious
discrepancy between the calculated and measured influence coefficients
for specimen 1, due, probably, to the elastic rotation and warping of
the steel Jjoint at the center of the specimen, the mode shapes of the
two cases agree fairly well, whereas the natural frequencies calculated
from the theoretical influence coefficients are 4 to 15 percent higher
than those calculated from the measured Influence coefficients.

ey
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EXPERTMENTATL CONFIRMATION OF THEORY

General

A1l of the specimens were tested in the same manner. Figure 7T shows
a typical test arrangement with specimen 2. The specimen was suspended
from the cantilevered channel A by four soft helical springs B (fig. 7).
The specimen was excited in a direction normsl to its width by a
loudspeaker-type shaker motor C (fig. 7). The stationary field coils of
this motor were excited by about 6 amperes of 110-volt direct current.
The reciprocating armature, which was connected to the steel joint of

the specimen by a-%- inch¥square aluminum-alloy dynamometer, was excited

by en amplified oscillator signal. The dynamometer had a low flexural
stiffness, so the restraint to the specimens offered by the springs and
dynamometer, except in the axial direction of the dynamometer, was low.
The restraint in the axial- direction of the dynemometer was made negli-
gible by adjusting the frequency until the ratio of specimen amplitude
to dynamometer force was a maximum.

The dynamometer was equipped with four %«-inch gage length SR-4

" wire strain gages. These gages were comnected to a modified SR-4 indi-
cator and a cathode-ray oscilloscope in such & manner that the steady-
state dynamic axial strein in the dynamometer could be measured to

12 microinches.

The relative accelerations at selected locations along front and
rear spars were measured with vacuum-tube accelerometers (reference 7).
The output of these accelerometers was a single sinusoidal wave the
amplitude of which could be accurately measured.

Determination of Natural Frequencies

An additional vacuum-tube accelerometer was attached to the tip P
(fig. 7). The specimen was excited at various frequencies and the
steady-state dynamic strain in the dynamometer together with the rela-
tive acceleration of the tip of the beam was measured. The specimen was,
eassumed to be in resonance when the ratio of the relative acceleration
at the tip of the specimen to the strain in the dynamometer (i.e.,
driving force) was a maximuim. A resonance curve for each specimen was
plotted during the frequency sweep tests and the maximums of the curve
reexamined at small increments in the freguency, about 2 cycles per
second, to determine those frequencies best representing the resonant
frequencies. Figure 8 shows the resonance curves for the three specimens.
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Determination of Normalilzed Mode Shapes

When the resonant frequencies for a specimen had been determined,
the specimen was excited at resonance and the relative mode shape mea-
sured with vacuum-tube accelerometers. One accelerometer was left at Q
(fig. 7). Other accelerometers were clamped at points every 6 inches
along the front and rear spars. Measurements of the relative accelera-
tions at location Q (fig. 7) and the point in question were made simul-
taneously. The acceleration of the point was then calculated relative
to a unit acceleration at Q. In this manner normalized acceleration.
values were determined. At a fixed frequency of harmonic motion, the
acceleration amplitude is proportional to the displacement amplitude;
therefore, these normalized acceleration values represented the normal-
ized displacement values of the measured points on the beam, or the shapes
essumed by the pairs of angles when the specimen was at resonance. This
mey not be true when damping is present.

The following mode shapes were measured:

Specimen 1: Lowest three modes. Two sets of measurements.were
made of each mode shape.

Specimen 2: First, second, and fourth modes. Two sets of measure-
ments were made of each mode shape. The first four modes were calcu-
lated, but the third mode, a torsion mode, was not excited experimentally
with the force applied as was done in the test. By the time the compu-
tations were complete, the test arrangement had been dismantled and could
not be repeated with a better point of force application.

Specimen 3: First and third modes. The second measured mode, again
a torsion mode, was not excited to any extent.

Iocal deformations of the specimens between bulkheads were observed
at a frequency of about 230 cycles per second. These deformations are
not included in the theory, so it was not considered worth while to mea-
sure the mode shapes of any modes above about 230 cycles per second.

COMPARISON OF THEORY AND EXPERIMENT

Figures 4, 5, and 6 show the results of the tests sﬁperposed on the
calculated mode shapes. Table 8 shows the comparison between calculated
and measured natursl frequencies for the three specimens.

It can be seen that the theory, which considers the mass concen-

trated at the bulkheads, can be used to predict the natural frequencies
to within about 6 percent, provided flexibility at the root of the

S Ansiannd
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gpecimen is taken into account, that is, that the influence coefficients
of the structure are known accurately. TFigure 3 shows that, using the
influence coefficients calculated with the assumption of a rigid root,
the errors in the natural frequencies range from 19 percent for the
lowest frequency to 10 percent for the second natural frequency, although
the errors in the mode shapes are reasonably small.

CONCLUDING REMARKS

The tests reported here indicate that the mode shapes and natural
frequencies of the fundamental and several higher modes for a structure
with and without large discontimiities may be adequately calculated by a
matrix iteration method, assuming the mass of the structure concentrated
at the bulkheads, provided that the elastic constants of the structure
are accurately known. The presence of some flexibility in the root may
produce large errors in the influence coefficients. Such flexibility
does not result, however, in serious errors in the mode shapes, but does
result in apprecisble errors in the calculated natural frequencies.

The experimental measurement of response over a range of frequencies
showed that at the higher frequencies there were appreciable local vibra-
tions of small elements of the beam. No attempt was made to check these
vibrations by meking an analysis of the beam with a finer mass distribu-
tion, since it was felt that these local vibrations have no structural
significance although they may be bothersome in the elements in which
they occur.

National Bureau of Standards
Washington 25, D. C., April 16, 1952
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TABLE 1

LOCATION AND MAGNITUDES OF MASS POINTS

REPLACING SFECIMEN 1

Coordinates
Mass (in.)
Foint (1b-sec?/in.)
X v Z
“1 0.1328 o] 0 -10.55
2 .0835 o] 0 o]
3 .0920 8.75 0 -10.63
4 L0584 8.75 0 0
5 .00760 - 20.75 0 -12.23
6 .00562 20.75 0 0]
T .00760 32.75 0 -12.23
8 .00562 32.75 0 0
9 .00760 4 75 0 -12.23
10 .00562 L. 75 0 0
11 .00753 56.75 0 -12.23
12 .00558 56.75 0 0
13 .00540 68.75 0 -12.10
1k .00372 68.75 0 0

1See fig. 2 for coordinate system.

14



3R NACA TN 2884

TABIE 2

LOCATION AND MAGNITUDES OF MASS POINTSL

REPLACING SPECIMEN 2

17

‘ COOfdinates
in.)
Point Mass
(1b-sec?/in.) 3
b4 Yy z
1 0.1328 0 0 -10.55
2 .0835 0 o} 0
3 .0920 8.75 0] -10.63
4 .0584 8.75 0 0
5 .00705 20.75 0 -12.40
6 .00524 20.75 0 0]
T .00705 32.75 o - -12.4k0
8 .0052k 32.75 0 0
9 .00760 L .75 0 -12.23
10 .00562 bl 75 0 0
11 .00753 56.75 0 -12.23
12 .00558 56.75 0 0
13 .00540 68.75 0 -12.10
14 .00372 68.75 0 0

Igee fig. 2 for coordinate system.

e e £ = v e A ———
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TABLE 3
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LOCATION AND MAGNITUDES OF MASS POINTSY

REPLACING SPECIMEN 3

Coordinates
in.
Point Mass ( )
¢ (1b-sec?/in.)

X y z
1 0.1328 o} 0 -10.55
2 .0835 0 0 0
3 .0913 8.75 0 -10.59
4 .0583 8.75 0 0
5 .00611 20.75 0 -11.69
6 .00530 20.75 0 0
T .00611 32.75 0 -11.69
8 .00530 32.75 o} 0
9 .006L43 hhy 75 0 -11.58
10 .00548 iy 75 0 0
11 .00637 56.75 0 -11.58
12 .00543 56.75 0 0
13 .00456 68.75 0 -11.41
1k .00370 68.75 0 0

1See fig. 2 for coordinate system. .
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COMIUTED INFLUETCE CCEFPICTERTS, BFECIMEN 1

hgge ML VOVN

Deflsction (in./Ib) at - ]
Losd (1)
at -
1[2|3|k 5 é 7 8 9 10 u 12 13 1k
1 jololofo] o 0 0 0 0 0 0 0 0 0
2 (o]olofo] o 0 ) 0 0 0 e 0 o 0
3 |o]ojolo] o 0 ) 0 0 0 ¢ 0 ) 0
" & jolalo]o} o 0 0 0 0 ) 0 0 0 0
5 {0[oolo} 1.65 x 106] 3.00 x 1076| 9.7% x 10°6| 5.63 x 10-6| 12.38 x 1076| 8.2 x 10°8| .91 x 1076| 10.77 x 106] 17.46 x 20-0| 13.38 x 106
g lolololol 3.00 10.53 5.63 13.10 8.19 15.65 10.73 18.20 13.36 £0.75
7 |ojo[ojo} 9.7h 5.63 25.h9 15.8k 35-hh 26.02 45.59 36.19 55.78 L6.36
8 [ojolo]o| .65 13.10 15.0% .78 26.01 ke.13 36.17 =p.36 L6.51 62.57
9 |ojolojofr2.38 8.19 35. 44 26.01 63.89 48,81 86.%9 T1.66 109.51 Ok, 50
10 [¢|o|o]o] B.e2 19.6% 26.08 ko3 L8.81 T3.T2 T1.6% 96.85 U TT 119.87
1 |o|ofofo|1.92 10.73 5.59 36.17 86.59 T1.65 132.92 11£.19 173.57 1%2.71
ig |o|o(o]o]1c.7T 18.80 36.19 22.36 T1.66 6.8 12.19 1h6.3% 183.05 187.50
13 |olo(olol17.46 13.36 .78 46,81 109,51 4. T7 173.57 153.05 243.12 215.95
1k |ofololef13.32 20.75 56.36 62,57 .32 119.87 132.71 . 187.%0 |e15.95 260.63

Lyalues reprosent calculated influence ccafficisnts at mass poimte of ideslizad stricture ahown in fig. 2. Off-dlsgonal vyelues have been
everaged to agrae with Mexwell's reciprocity theorem.
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Daflsction (in./1b) at -
Load (1)
&t - .
1|2 3 k 5 6 7 8 g 10 1. 12 13 711+

1 |o|olo 0 o 0 0 0 0 0 0 0 ) 0

£ [0}0]0 0 0. 0 1o 0 0 0 0 0 ) 0

3 |ololo ) 2.2 x 10| 1.1 % 2076| 2.8 x 10| 1.5 x 106 3.0 x 10| 2.0 x 206 3.2 x 106| 2.3 x 20| k. x 206| 2.9 x 10-6

4 [o[o]o 0 1.0 3.5 1.5 b3 1.8 5.0 21 5.5 3.2 B.h

s |oo|2.2 x 106] 1.0 x 10-6|10.8 5.9 17.7 1.3 22.8 16.6 27.2 eL.e 33.3 6.8

6 |olojr.a 3.5 5.9 16.5 1.1 ee.6 16.1 #8.1 £1.0 33.3 26.6 38,3

7 |ofo|2.8 1.5 7.7 1.1 8.8 5.7 3.2 k1.3 67,3 95,9 8e.9 TL.1

8 |ofo]1.5 b3 11.3 22.6 e5.7T 6.7 5.5 63.1 55.1 7.8 70.8 92'.:

9 |o|o]3.0 1.8 22.8 16.1 93.e 50.5 8.9 .1 7.9 100.6 158.2 130.8
1o |ofojz.0 5.0 16.6 28.1 k1.3 £3.1 TL.1 12,2 100.6 132.8 131.6 150.7
11 |ofol3.2 2.1 o71.2 eL.0 67.3 =5.1 117.9 100.6 173.1 1k9.6 pah.k 159.2
e |ojole.3 3.5 21.2 33.1 35.9 .8 100.6 132.8 149.6 92.1 £OL.9 2h2.9
13 [o]o|s.e 3.2 33.3 26.6 82.9 70.8 1482 131.6 2=b.4 £0L.9 3092 2739
1 [ofofe.9 6.k 6.0 38.3 .1 92.5 130.2 | 162.7 199.2 2ho.9 £73.9 328.7

Ivalues to influsnce coefficiemte at mese points of idealized structure shown in Tig. 2.

vith ¥axvell's recijrocity theorem.

Qff-disgonal values have been averaged to agree
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S U et

TARLX &

HEAJURED INFIDEICE COEFFICIEETI, OFECTMEN 2

Daflaction (in./1b) at -

{1}

Load (1} B
at -
1|z 3 L4 3 7 8 9 10 u 12 13 1k
1 |o]ofo 0 o o 0 0 0 a 0 0 0 0
2 |o|ofo 0 o 0 0 0 0 0 ‘0 0 Q o
3 |ofolo o 2.65 x 105| 1.05 x 106| 3.60 x 10°5| 1.99 x 10°6] .35 x 2076| 1.87 x 20| k.39 x 1076 .31 x 2076 .80 x 206| 3.2k x 106
L |o|o|o [} 1.03% 1.79 1.83 1.98 1.6 2.545 2.6k 0.888 3.07 3.99%
5 laloie.es < 10611.a3 x 15-B115.5n .53 22,50 11.53 8.3 15.55 3k,1% 2,21 0.08 25,98
& |o|oj1.oh 1.78 5.65 1e.57 11.11 17.97 16.16 22,525 21,70 7.5 26.76 33.86
7 |o]o]3.60 1.83 22,60 un.n 50.30 oh, 0k 68,30 39.79 84.73 55.79 100.73 Te.50
-8 |ofo[1.29 1.98 11.03 17.97 2h.ok .9 35.8k 55,71 55.88 , | 73.6% TL.63 - .99
9 |ofo|3.5 1.8 8,38 16.16 £8.30 39.84 111.20 .15 _ |1k5.08 10k.08 178.18 138.81
10 |ofof1.87 2.545 15.03 =,%3 5.79 53.71 TL.1% %.53 10%,31 128.545 136,57 161,12
11 |o|o]k.35 2.85 k.15 £1.70 k.73 55.68 145,28 104.31 211.30 1%5.16 265.83 £18.21°
12 |olo|e.22 2.0635 2181 27-875 =5.79 T3.655 104.08 128.545 |1%9.16 190.h3 £13.26 ohE.bh
13 lojolk.80 2.07 8.90 £6.76 100.73 .62 178.18 136.57 £63.83 £13.26 328.45 297.99
1k |ofo|3.1k 3.295 26.98 33.96 T2.%0 ) 83.599 136.81 161.12 218,81 2h6 bk 297.95 |338.09

lygilnes carrespond to influerce coafficlemts at maas poimts of idesalized structure shown in fig. 2.

Hexwvell's reciproaity theorem.

Off-diagonal valuce hava been averagsd to sgree vith
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TABIE T

HEASURED THFOENCE COEFFICIENTS, SIFCTHER 3

Deflsction {in./1b) at -
Load (1)
at -
1|23 3 3 T 8 10 11 13 1%
1 |ofolo 0 0 o 0 0 ) 0 0 0 o
2 |o|o|o o ) o Q 0 0 o ) o 0
3 [ofolo 0 2.5 % 106 1.16 x 1076| 2.96 x 1076|147 x 206 3.8 x 20°6] 2.1 x 106 3.57 x 206 2.5 x mﬁ k21 x 1078  3.30 x 1076
L jolojo o 96 3.10 1.5 3.50 8.16 .70 2.28 3.15 6.30
5 [o]o|a.5 x 1076 .96 x 1061597 6.20 28.96 11.07 28.76 16.kh | 3h3e 19.63 27.53
€ lolo|1.a6 3.10 6,80 11.70 n.k 25,00 16.97 21.30 a2.08 e8.07 k2,05
7 |o|o|e.9% 1.5 22,96 1.4 51.68 25.70 T0.3h 9.6 &7.03 103.64 73.h2
8 (ofolv.aT 3.% .07 25.00 23.T0 ko k0. Th.05 56.5% T 108.35
9 101013.56 2.1 2.7 18.97 70.34 ko.k7 nt, T3.77 185,77 wn LT
1o (o|o]a.11 3.T0 16,4k 31.30 39.61 74,05 T3.77 |121.20 107.70 1kk.08 192,90
11 |ofo(3-57 2.3 3h.32 22,08 87.03 56.9% U3, T7 107.70 215.83 275.66 20k Th
12 |ofo|a.% h.bo 21.16 36.65 56.37 91.2% 108.09 157.30 166.10 £06.62 85.05
13 [afo k.11 3.16 19.63 £8.07 E.oa.a ™. T9 184,72 14h.08 275.66 379.22 a1h.53
14 [ofof3.30 30 a7.53 82,08 T3.h2 108.35 1kk.02 192,90 o2l T 314.53 |382.70

lyaluas represent influence coefficients at mmss points of idenlired structure shown in fig. 2.

recimeocity theorem,

0ff-4iagonal valnas have been averaged to agree vith Haxwell's
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TABIE 8

TREQUERCTIES OF SPECT)

ke ok U Aol L WA i AV ad al

COMPARTSON (F CAICULATED AWD MEASURED NATURAL
5]

Bpecimen First mode Becond mode Third mode Fourth mode

Mespured|Calculated| Measured|Calculated |[Measured Ca}.culated Mesgured{Calculated

81g 66 68.4 181 190.2 221 234.6 —— | emman
b1p 66 8.4 | 181 | 1981 221 252.5 | e
o 63 6h.8 173 181.3 | =-- 18%.7 198 20k 7
3 6l 66.3 --- 16k.3 173 179.5 PR R

Bla, calculated using measured influence coefficients.
P1b, calculated using theoretical influence coefficients.
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Figure 1.- Design of specimen. All dimensions in inches.
A17S-T3 brazier head.
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4R NACA TN 2884

Figure 2,- Typilcal locations of masses replacing masses of actusl structures.




Relative deflection

Infl_uence Calculated
coefficiénts frequency -
(cps)
- Theoratical 8.4 1.0 ¢
— — — «— Mesnsured 68.4
- ) 1.0
/ g 5
— S .or
£
]
’c’j l6 B
)]
d
P
B
i
g
a2t
b
=
, I L I L | ! |
_ . ~ O _ 3
—"20 30 40 50 60 70 e 30 % 50 60 70
- Distance from center line, in. -2 Distance from center line, in.
— Front angles =L Rear angles

(a) Fundsmental mode.

Figure 3.- Comparison of mode shepes of semibesm (specimen 1) calculated
from both measured and- theoretical infiunence coefficients.
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Reletive displacement

1.2

1.0

-.2

-.h

Influence Calculated
coefficients frequency
(cps)
Theoretical 198.1
———— Meapured 190.2 1.2

Relative displacement

Distence from center linpe, in.
~ Front angles

(b) Second resonance mode.

Figure 3.- Continued.

Distence from center line, in.
Rear angles
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1.2

1.0

Relative displacement

»-.2

| _

. Influence Celculated
coefficients frequency
(cps)
o Theoretical 252.5
4 - em e e Measured o34,6
A .l}_
L L 1 ] J 1 L 1 J
# 20 30 4 50 60 170 - % 50 60 T0
o
Distance from center line, in. % Distance from
g center line, in.
~
&
o
Lo
Front angles o
e
4
3
~
-1.0
-1.2L

A Mhgan
VG

Fipure 3.- Concluded.
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T 1.2
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ﬁ ﬂ— LA
o=
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Rear O
L l_ L A J
T0 60 50 4o 70

(a) Fundamental mode. Measured frequency, 66 cycles per second; calculated
’ frequency, 68:4 cycles per second.

Figure 4.- Calculsted and measured mode shapes of specimen 1. Calculated
modes obtained from measured influence coefficients.
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NACA TN 2884
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(b) Second resonance mode.

-1.24

// Distance from center
line, in.

Measured

Front 4
Rear O

Measured frequency, 181 cycles per second;

calculated frequency, 190.2 cycles per second.

Figure 4.- Continued.




NACA TN 288 : _ “ : 31

K
l.2o
8 12
g +
2 1.0t
& A
o3 S | ++yT T
do++ ¢ +
3 .64
+ I
[1)]
Theory . b + Measured
(0]
Front o T\ ¢ _ Front +
Rear ——— — // \ Rear O
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/ \ Distance from center
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(¢) Third resonance mode. Measured frequency, 221 cycles per second;
calculated frequency, 23L4.6 cycles per second.

Figure 4.- Concluded.
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1.0 L . Qy@

‘d
Relative displacement
o ®
N

Measured Theory

Rear 0] —_—
Front e 2 Z———_——

(a) Fundemental mode. Measured frequency, 63 cycles per second;
calculated frequency, 64.8 cycles per second.

Figure 5.- Calculated and measured mode shapes of specimen 2. Calculated

modes obhtained from mesasured inPluence coefficients,
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33
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Rear —~——— O
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(b) Second resonance mode. Measured frequency, 173 cycles per second;
. calculated frequency, 181.3 cycles per second.

Figure 5.- Continued.
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Relative displacement

NACA TN 288L

1.5¢

(3

70
/
L
/I
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p’/
Ve (@)
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(c) Fourth resonance mode.

30 50 70

Distance from center
O\ line, in.

-.54 \
. \ 4
\ . Theory  Measured
(o] \
o \\ Front ———— <o
\ Rear O
~1.04 \
O \\\
\\\
(0]
0 O
-1.5+ O ©
o]

Measured frequency, 198 cycles per second;

calculated frequency, 204%.T cycles per second.

Figure 5.- Concluded.



. Measured Theory +1.0 .
Front © _— £ /ﬁ
Rear & = ——e—- a
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o
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i
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— 7
o1
=
74
e I [ 1 | f__l
7o 0 _&& 20 330 k50 & 10

Distance from center
line, in.

(a) Fundemental mode. Measured frequency, 64 cycles per second;
calculated frequency, 66.3 cycles per second.

Figure 6.- Calculated and measired mode shepes of specimen 3. Calculated
modes Obtained from measured influence coefficients.
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(b) Second resonsnce mode. Measured frequency, 173 cycles per second;
celculated frequency, 179.5 cycles per second.

Pigure 6.- Concluded.
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Figure T7.- Apparatus and specimen 2. Cantilevered channel, A; springs, B;
pulsator, C; accelerometer statlions, P and Q.
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38 NACA TN 2884

220

150
Frequency, cps

(a) Specimen 1
Figure 8.- Resonence curves.

100

12 x 107

10
at
6

Am ‘ureI}s I9jomomenip/Teudls JI23IWOLSTSIIV:




NACA TN 2884

1.0 x 10°

mv

173

Accelerometer/dynamometer strain,

0 | ] i .

./

o 50 © 100 - 200 300 koo
' Frequency, cps

(b) Specimen 2.

Figure 8.- Continued.

et e e i m et e e ———— i e e e e e A e e ke T = e —



. NACA TN 2884

(@]

4 &

o

.Aw

()]

o
—

ﬂ -
& -
.o
g5 < 4
- - A
5 3 8
& 8
BB o
3 -
[

ﬁ%

I 1 | i1
4 2 4 18

‘UTBI}8 I93eWOWRULD/I91SWOIITIIIY

NACA-Langley - 1-30-83 - 1000



